The Distinct Economic Effects of the Ethanol Blend Wall, RIN Prices and Ethanol Price Premium due to the RFS
نویسندگان
چکیده
The ethanol blend wall and high RIN prices has become a controversial policy issue. We develop a model showing how RIN prices reflect the costs of overcoming the blend wall, namely biodiesel consumed in excess of its mandate and expansion of E85 sales. These costs are very high and are shown to be borne by producers and consumers of ethanol and gasoline. Although RIN prices reduce consumer prices of ethanol in both the E10 and E85 blends, the net price of E10 rises because obligated parties, who are required to purchase RINs, recoup the cost by passing on higher gasoline prices to blenders. This tax on gasoline production to pay for the subsidy on all ethanol consumption and RIN prices are a means of payment for " excess " RINs that are required to pay for costs overcoming the blend wall. Burkholder (2015) and EPA (2015) emphasize this first round subsidy that also increases ethanol market prices. But these papers downplay the overall increased costs of fuel to consumers due to RINs taxing gasoline producers, and the separate adverse market effects of a binding blend mandate. The latter has been missing in the debate where it is often implied that the RIN price represents the degree to which the ethanol mandate is binding. We show the RIN price represents the costs of overcoming the blend wall and the ethanol price premium due to the binding blend mandate reflects costs of the RFS itself. Our model determines RIN prices, the costs of overcoming the blend wall and the relationship with the ethanol price premium due to the binding mandate. We use economic theory consistent with the reality of the RFS and its associated complexities. From our empirical simulations, we find RIN prices went up because of the costs of the blend wall. Increasing the mandate with a blend wall caused E10 prices and market gasoline prices to increase, along with an increase in ethanol consumption and market prices. But ethanol and market prices would increase far more without a blend wall for the same increase in the mandated volume. In addition to the costs of overcoming the blend wall, our analysis finds the cost of the mandate price premium for ethanol to fuel consumers is $53.7 billion between 2007 and 2014, and to consumers of crops (including animal agriculture) by $285.4 billion per year worldwide. Our model also obtains the result …
منابع مشابه
The Impact of Bio-Ethanol Conversion and Global Climate Change on Corn Economic Performanve of Indonesia
Many studies conclude that the rise in global food prices due to higher demand from the development of biofuels, climate anomalies, and increased of oil prices. Not only the food commodity index rose more than 60 percent, nonfood commodity price index also rose over 60 percent and crude oil price index has increased even further above 60 percent. The purpose of this study is to analyze the impa...
متن کاملCommodity Price Volatility in the Biofuel Era: An Examination of the Linkage between Energy and Agricultural Markets
Agricultural and energy commodity prices have traditionally exhibited relatively low – even negative correlation. However, the recent increases in biofuel production have altered the agriculture-energy relationship in a fundamental way. The amount of corn utilized for ethanol production in the US has increased from 5% in 2001 to over one-third by the end of the decade. This increase has drawn c...
متن کاملWhich Will Overcome? The Productivity or Risk Premium
The study investigates consumers’ preference for cowpea reflected in the Nigerian markets through price discounts and premiums that consumers pay for different cowpea characteristics. The price data used for this study were obtained through a market survey. A common data collection protocol was employed. Every month, between October 2009 to December 2010, five cowpea samples per seller were bou...
متن کاملThe Effects of Ethanol–gasoline Blend on Performance and Exhaust Emission Characteristics of Spark Ignition Engines
The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), ...
متن کاملDoes it Matter Whether the EPA Targets Volumetric or Fractional RFS Standards?
In a farmdoc daily article last week (June 3, 2015), we analyzed whether the ethanol mandates recently proposed by the EPA for 2015 and 2016 were high enough to provide a “push” for biofuels use beyond the E10 blend wall. The analysis confirmed that the proposed mandates do indeed imply pressure towards higher ethanol blends or non-ethanol biofuel, but this depends on assumptions about growth i...
متن کامل